Math 105 TOPICS IN MATHEMATICS STUDY GUIDE FOR FINAL EXAM – FC

May 6 (Wed), 2015

Instructor: Yasuyuki Kachi

Line #: 52920.

• $\S 31$. Trigonometry – II.

'Radians' and 'degrees' are two alternative units to measure angles. We are familiar with 'degrees'. Below is the basic special values of 'cos' and 'sin' which you need to remember:

• Basic 'cos' and 'sin' values – I. $0^{\circ} \le \theta \le 90^{\circ}$.

$$\cos 0^{\circ} = 1,$$
 $\sin 0^{\circ} = 0,$ $\cos 30^{\circ} = \frac{\sqrt{3}}{2},$ $\sin 30^{\circ} = \frac{1}{2},$ $\cos 45^{\circ} = \frac{1}{\sqrt{2}} \left(= \frac{\sqrt{2}}{2} \right),$ $\sin 45^{\circ} = \frac{1}{\sqrt{2}} \left(= \frac{\sqrt{2}}{2} \right),$ $\cos 60^{\circ} = \frac{1}{2},$ $\sin 60^{\circ} = \frac{\sqrt{3}}{2},$ $\cos 90^{\circ} = 0,$ $\sin 90^{\circ} = 1.$

• Basic 'cos' and 'sin' values – II. $90^{\circ} < \theta \le 180^{\circ}$.

$$\cos 120^{\circ} = -\frac{1}{2}, \qquad \sin 120^{\circ} = \frac{\sqrt{3}}{2},$$

$$\cos 135^{\circ} = -\frac{1}{\sqrt{2}} \left(= -\frac{\sqrt{2}}{2} \right), \qquad \sin 135^{\circ} = \frac{1}{\sqrt{2}} \left(= \frac{\sqrt{2}}{2} \right),$$

$$\cos 150^{\circ} = -\frac{\sqrt{3}}{2}, \qquad \sin 150^{\circ} = \frac{1}{2},$$

$$\cos 180^{\circ} = -1, \qquad \sin 180^{\circ} = 0.$$

• Basic 'cos' and 'sin' values – III. $-90^{\circ} \le \theta < 0^{\circ}$.

$$\cos\left(-30^{\circ}\right) = \frac{\sqrt{3}}{2}, \qquad \sin\left(-30^{\circ}\right) = -\frac{1}{2},$$

$$\cos\left(-45^{\circ}\right) = \frac{1}{\sqrt{2}} \left(=\frac{\sqrt{2}}{2}\right), \qquad \sin\left(-45^{\circ}\right) = -\frac{1}{\sqrt{2}} \left(=-\frac{\sqrt{2}}{2}\right),$$

$$\cos\left(-60^{\circ}\right) = \frac{1}{2}, \qquad \sin\left(-60^{\circ}\right) = -\frac{\sqrt{3}}{2},$$

$$\cos\left(-90^{\circ}\right) = 0, \qquad \sin\left(-90^{\circ}\right) = -1.$$

• Basic 'cos' and 'sin' values – IV. $-180^{\circ} < \theta < -90^{\circ}$.

$$\cos\left(-120^{\circ}\right) = -\frac{1}{2}, \qquad \sin\left(-120^{\circ}\right) = -\frac{\sqrt{3}}{2},$$

$$\cos\left(-135^{\circ}\right) = -\frac{1}{\sqrt{2}}\left(=-\frac{\sqrt{2}}{2}\right), \quad \sin\left(-135^{\circ}\right) = -\frac{1}{\sqrt{2}}\left(=-\frac{\sqrt{2}}{2}\right),$$

$$\cos\left(-150^{\circ}\right) = -\frac{\sqrt{3}}{2}, \qquad \sin\left(-150^{\circ}\right) = -\frac{1}{2},$$

$$\cos\left(-180^{\circ}\right) = -1, \qquad \sin\left(-180^{\circ}\right) = 0.$$

• Now, check out the conversion table in the next page:

radian	degree
0	0°
$\frac{\pi}{6}$	30°
$\frac{\pi}{4}$	45°
$\frac{\pi}{3}$	60°
$\frac{\pi}{2}$	90°
$\frac{2\pi}{3}$	120°
$\frac{3\pi}{4}$	135°
$\frac{5\pi}{6}$	150°
π	180°
$-\frac{\pi}{6}$	- 30°
$-\frac{\pi}{4}$	-45°
$-\frac{\pi}{3}$	-60°
$-\frac{\pi}{2}$	-90°
$-\frac{2\pi}{3}$	-120°
$-\frac{3\pi}{4}$	-135°
$-\frac{5\pi}{6}$	-150°
$-\pi$	- 180°

This allows us to rewritre everything using radians:

Basic 'cos' and 'sin' values (in radians) – I. $0 \le \theta \le \frac{\pi}{2}$.

$$\cos 0 = 1,$$

$$\sin 0 = 0,$$

$$\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2},$$

$$\sin\frac{\pi}{6} = \frac{1}{2},$$

$$\cos\frac{\pi}{4} = \frac{1}{\sqrt{2}} \left(= \frac{\sqrt{2}}{2} \right)$$

$$\cos\frac{\pi}{4} = \frac{1}{\sqrt{2}} \left(= \frac{\sqrt{2}}{2} \right), \qquad \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}} \left(= \frac{\sqrt{2}}{2} \right),$$

$$\cos\frac{\pi}{3} = \frac{1}{2},$$

$$\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2},$$

$$\cos\frac{\pi}{2} = 0,$$

$$\sin \frac{\pi}{2} = 1.$$

Basic 'cos' and 'sin' values (in radians) – II. $\frac{\pi}{2} < \theta \le \pi$.

$$\cos \frac{2\pi}{3} = -\frac{1}{2},$$

$$\sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2},$$

$$\cos \frac{3\pi}{4} = -\frac{1}{\sqrt{2}} \left(= -\frac{\sqrt{2}}{2} \right), \sin \frac{3\pi}{4} = \frac{1}{\sqrt{2}} \left(= \frac{\sqrt{2}}{2} \right),$$

$$\sin \frac{3\pi}{4} = \frac{1}{\sqrt{2}} \left(= \frac{\sqrt{2}}{2} \right),$$

$$\cos\frac{5\pi}{6} = -\frac{\sqrt{3}}{2},$$

$$\sin \frac{5\pi}{6} = \frac{1}{2},$$

$$\cos \pi = -1.$$

$$\sin \ \pi = 0.$$

• Basic 'cos' and 'sin' values (in radians) – III. $-\frac{\pi}{2} \le \theta < 0$.

$$\cos\left(-\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}, \qquad \sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2},$$

$$\cos\left(-\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}\left(=\frac{\sqrt{2}}{2}\right), \qquad \sin\left(-\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}}\left(=-\frac{\sqrt{2}}{2}\right),$$

$$\cos\left(-\frac{\pi}{3}\right) = \frac{1}{2}, \qquad \sin\left(-\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2},$$

$$\cos\left(-\frac{\pi}{2}\right) = 0, \qquad \sin\left(-\frac{\pi}{2}\right) = -1.$$

• Basic 'cos' and 'sin' values (in radians) – IV. $-\pi \le \theta < \frac{\pi}{2}$.

$$\cos\left(-\frac{2\pi}{3}\right) = -\frac{1}{2}, \qquad \sin\left(-\frac{2\pi}{3}\right) = -\frac{\sqrt{3}}{2},$$

$$\cos\left(-\frac{3\pi}{4}\right) = \frac{1}{\sqrt{2}}\left(=\frac{\sqrt{2}}{2}\right), \quad \sin\left(-\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}}\left(=-\frac{\sqrt{2}}{2}\right),$$

$$\cos\left(-\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2}, \qquad \sin\left(-\frac{5\pi}{6}\right) = -\frac{1}{2},$$

$$\cos\left(-\pi\right) = -1, \qquad \sin\left(-\pi\right) = 0.$$

• $\S 32$. Distance.

Recall the following definition:

Definition. Let P and Q be two points, both lying in the xy-coordiate system. Suppose the coordinate reading of P and Q are given by

$$P = (a, b),$$
 and $Q = (c, d),$

respectively. Then the distance |PQ| between P and Q is

$$\sqrt{\left(c-a\right)^2+\left(d-b\right)^2}$$

 \star The following is a speial case:

Let P be a point, lying in the xy-coordiate system. Suppose the coordinate reading of P is given by

$$P = (a, b).$$

Meanwhile, let O be the coordinate origin:

$$O = (0, 0).$$

Then the distance |PO| between P and O is

$$\sqrt{a^2+b^2}$$

Example. Let's find the distance between

$$P = (3, 5), Q = (4, 7).$$

By definition,

$$|PQ| = \sqrt{(4-3)^2 + (7-5)^2}$$
$$= \sqrt{1^2 + 2^2}$$
$$= \sqrt{5}.$$

Example. Let's find the distance between

$$P = (1, -3),$$
 $Q = (-2, 4).$

By definition,

$$|PQ| = \sqrt{(-2-1)^2 + (4-(-3))^2}$$

$$= \sqrt{(-3)^2 + 7^2}$$

$$= \sqrt{9+49}$$

$$= \sqrt{58}.$$

Example. Let's find the distance between

$$P = (-5, 0), Q = (6, 0).$$

By definition,

$$|PQ| = \sqrt{(6 - (-5))^2 + (0 - 0)^2}$$

$$= \sqrt{11^2 + 0^2}$$

$$= \sqrt{11^2}$$

$$= 11.$$

Example. Let's find the distance between

$$P = (12, 1), O = (0, 0).$$

By definition,

$$|PO| = \sqrt{12^2 + 1^2}$$

$$= \sqrt{144 + 1}$$

$$= \sqrt{145}.$$
8

Q. Find the distance between P and Q.

(1)
$$P = (2, 0), Q = (3, 1).$$

(2)
$$P = (-4, 3), \qquad Q = (-1, 7).$$

(3)
$$P = (-3, 4), \qquad Q = (2, 16).$$

(4)
$$P = (100, 0), Q = (100, 1).$$

(5)
$$P = (4, 1), O = (0, 0).$$

(6)
$$Q = (0, 0), \qquad Q = (8, 15).$$

 $oxed{Answers}$:

- (1) $\sqrt{2}$. (2) 5. (3) 13. (4) 1.
- (5) $\sqrt{17}$. (6) 17.

• Most basic property of sin and cos.

No matter what you do, please remember the following, which is extremely important:

$$\left(\cos\theta\right)^2 + \left(\sin\theta\right)^2 = 1 \qquad .$$

This is true no matter what θ is.

Example.
$$\left(\cos\frac{\pi}{9}\right)^2 + \left(\sin\frac{\pi}{9}\right)^2 = 1.$$

Example.
$$\left(\cos\frac{\pi}{5}\right)^2 + \left(\sin\frac{\pi}{5}\right)^2 = 1.$$

Example.
$$\left(\cos\frac{3\pi}{7}\right)^2 + \left(\sin\frac{3\pi}{7}\right)^2 = 1.$$

Example.
$$\left(\cos\frac{\pi}{\sqrt{2}}\right)^2 + \left(\sin\frac{\pi}{\sqrt{2}}\right)^2 = 1.$$

Example.
$$\left(\cos\left(-\frac{\pi}{15}\right)\right)^2 + \left(\sin\left(-\frac{\pi}{15}\right)\right)^2 = 1.$$

★ Can you paraphrase the above identity in terms of the distance? I bet you can.

" The distance between

$$P = \left(\cos\theta, \sin\theta\right)$$

and the coordinate origin O = (0, 0) is always 1."

 \star Here is a further paraphrase:

" The point

$$P = \left(\cos\theta, \sin\theta\right)$$

always lies in the unit circle, the circle with radius 1 centered at the origin."

Here is one important exercise:

Q. Find the distance between

$$P = \left(\cos\frac{\pi}{4}, \sin\frac{\pi}{4}\right), \qquad Q = \left(\cos\frac{\pi}{6}, \sin\frac{\pi}{6}\right).$$

Solution: First, recall

$$\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}, \qquad \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2},$$

$$\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}, \qquad \sin \frac{\pi}{6} = \frac{1}{2}.$$

Thus, by definition,

$$|PQ| = \sqrt{\left(\left(\cos\frac{\pi}{4}\right) - \left(\cos\frac{\pi}{6}\right)\right)^2 + \left(\left(\sin\frac{\pi}{4}\right) - \left(\sin\frac{\pi}{6}\right)\right)^2}$$

$$= \sqrt{\left(\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}\right)^2 + \left(\frac{1}{2} - \frac{\sqrt{2}}{2}\right)^2}$$

$$= \sqrt{\left(\frac{\sqrt{3} - \sqrt{2}}{2}\right)^2 + \left(\frac{1 - \sqrt{2}}{2}\right)^2}$$

$$= \sqrt{\frac{3 + 2 - 2\sqrt{3} \cdot \sqrt{2}}{4} + \frac{1 + 2 - 2 \cdot 1 \cdot \sqrt{2}}{4}}$$

$$= \sqrt{\frac{5 - 2\sqrt{6}}{4} + \frac{3 - 2\sqrt{2}}{4}}$$

$$= \sqrt{\frac{5 - 2\sqrt{6} + 3 - 2\sqrt{2}}{4}}$$

$$= \sqrt{\frac{8 - 2\sqrt{6} - 2\sqrt{2}}{4}} \left(= \frac{1}{2}\sqrt{8 - 2\sqrt{6} - 2\sqrt{2}}\right).$$

Q. Let P and Q be as in the previous Q. Let

$$R = \left(\cos\frac{\pi}{12}, \sin\frac{\pi}{12}\right), \qquad S = \left(1, 0\right).$$

Explain why |PQ| and |RS| are equal. Then use that fact and the result of the previous Q to evaluate $\cos \frac{\pi}{12}$.

[Solution]:

 $\frac{P}{4}$ and Q are both lying in the unit circle such that the angle $\angle POQ$ equals $\frac{\pi}{4} - \frac{\pi}{6} = \frac{\pi}{12}$. R and S are also both lying in the unit circle such that the angle $\angle ROS$ equals $\frac{\pi}{12} - 0 = \frac{\pi}{12}$. Hence |PQ| and |RS| are naturally equal. Now,

$$|RS| = \sqrt{\left(\left(\cos\frac{\pi}{12}\right) - 1\right)^2 + \left(\sin\frac{\pi}{12}\right)^2}$$

$$= \sqrt{\left(\cos\frac{\pi}{12}\right)^2 - 2\left(\cos\frac{\pi}{12}\right) + 1 + \left(\sin\frac{\pi}{12}\right)^2}$$

$$= \sqrt{1 - 2\left(\cos\frac{\pi}{12}\right) + 1}$$

$$= \sqrt{2 - 2\left(\cos\frac{\pi}{12}\right)}.$$

This equals

$$|RS| = \sqrt{\frac{8 - 2\sqrt{6} - 2\sqrt{2}}{4}}.$$

So

$$2 - 2\left(\cos\frac{\pi}{12}\right) = \frac{8 - 2\sqrt{6} - 2\sqrt{2}}{4}.$$

Solve this for $\cos \frac{\pi}{12}$:

$$2\cos\frac{\pi}{12} = \frac{2\sqrt{6} + 2\sqrt{2}}{4}$$

$$\implies \qquad \cos\frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}.$$

• §34. Mean values.

Recall

- (1) the mean of a_1 is $\frac{a_1}{1}$.
- (2) the mean of a_1 and a_2 is $\frac{a_1 + a_2}{2}$.
- (3) the mean of a_1 , a_2 and a_3 is $\frac{a_1 + a_2 + a_3}{3}$.
- (4) the mean of a_1 , a_2 , a_3 and a_4 is $\frac{a_1 + a_2 + a_3 + a_4}{4}$.
- (5) the mean of a_1 , a_2 , a_3 , a_4 and a_5 is $\frac{a_1 + a_2 + a_3 + a_4 + a_5}{5}$.
- \mathbf{Q} . (1) Find the mean of 2.
- (2) Find the mean of 3 and -7.
- (3) Find the mean of 3, 5 and 17.
- (4) Find the mean of 4, 6, 8 and 10.
- (5) Find the mean of -1, 2, -3, 4 and -5.
- (6) Find the mean of 96, 48, 24, 12, 6 and 3.

Answers: (1) 2. (2)
$$-2$$
. (3) $\frac{25}{3}$. (4) 7.

(5)
$$-\frac{3}{5}$$
. (6) $\frac{63}{2}$.

Example. Let $f(x) = x^2$. Then

- (1) the mean of f(1) is $\frac{1^2}{1}$.
- (2) the mean of f(1) and f(2) is $\frac{1^2+2^2}{2}$.
- (3) the mean of f(1), f(2) and f(3) is $\frac{1^2+2^2+3^2}{3}$.
- (4) the mean of f(1), f(2), f(3) and f(4) is $\frac{1^2+2^2+3^2+4^2}{4}$.
- (5) the mean of f(1), f(2), f(3), f(4) and f(5) is $\frac{1^2 + 2^2 + 3^2 + 4^2 + 5^2}{5}$ \vdots

Example. Let $f(x) = x^2$ again. Then

- the mean of $f\left(\frac{x}{2}\right)$ and $f\left(\frac{2x}{2}\right)$ is $\frac{\left(\frac{x}{2}\right)^2 + \left(\frac{2x}{2}\right)^2}{2}$,
- $\circ \text{ the mean of } f\left(\frac{x}{3}\right), \ f\left(\frac{2x}{3}\right) \text{ and } f\left(\frac{3x}{3}\right) \text{ is } \frac{\left(\frac{x}{3}\right)^2 + \left(\frac{2x}{3}\right)^2 + \left(\frac{3x}{3}\right)^2}{3},$
- \circ the mean of $f\left(\frac{x}{4}\right)$, $f\left(\frac{2x}{4}\right)$, $f\left(\frac{3x}{4}\right)$ and $f\left(\frac{4x}{4}\right)$ is

$$\frac{\left(\frac{x}{4}\right)^2 + \left(\frac{2x}{4}\right)^2 + \left(\frac{3x}{4}\right)^2 + \left(\frac{4x}{4}\right)^2}{4},$$

:

Here,

$$\frac{\left(\frac{x}{2}\right)^2 + \left(\frac{2x}{2}\right)^2}{2} = \left(1^2 + 2^2\right) \frac{x^2}{2^3},$$

$$\frac{\left(\frac{x}{3}\right)^2 + \left(\frac{2x}{3}\right)^2 + \left(\frac{3x}{3}\right)^2}{3} = \left(1^2 + 2^2 + 3^2\right) \frac{x^2}{3^3},$$

$$\frac{\left(\frac{x}{4}\right)^2 + \left(\frac{2x}{4}\right)^2 + \left(\frac{3x}{4}\right)^2 + \left(\frac{4x}{4}\right)^2}{4} = \left(1^2 + 2^2 + 3^2 + 4^2\right) \frac{x^2}{4^3},$$

$$\vdots$$

As you extrapolate the patterns, you agree that the following is true:

• the mean of
$$f\left(\frac{x}{n}\right)$$
, $f\left(\frac{2x}{n}\right)$, $f\left(\frac{3x}{n}\right)$, \cdots $f\left(\frac{nx}{n}\right)$ is
$$\left(1^2 + 2^2 + 3^2 + \cdots + n^2\right) \frac{x^2}{n^3}.$$

As for the underlined part, let's recall the formula:

Formula. (from "Review of Lectures – XXVII").

$$1^{2} + 2^{2} + 3^{2} + 4^{2} + \dots + n^{2} = \frac{1}{3}n^{3} + \frac{1}{2}n^{2} + \frac{1}{6}n$$

So the above is paraphrased as follows:

• the mean of
$$f\left(\frac{x}{n}\right)$$
, $f\left(\frac{2x}{n}\right)$, $f\left(\frac{3x}{n}\right)$, ..., $f\left(\frac{nx}{n}\right)$ is
$$\left(\frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n\right)\frac{x^2}{n^3}$$
,

that is,

$$\left(\frac{1}{3} + \frac{1}{2} \cdot \frac{1}{n} + \frac{1}{6} \cdot \frac{1}{n^2}\right) x^2.$$

It is useful for later purpose to examine the state of this quantity when n grows arbitrarily large. When n grows, like

$$n = 1000,$$
 $n = 1000000,$
 $n = 1000000000,$
:

then accordingly $\frac{1}{n}$ and $\frac{1}{n^2}$ become negligible:

$$n = 1000 \implies \frac{1}{n} = 0.001, \qquad \frac{1}{n^2} = 0.000001,$$

$$n = 10000000 \implies \frac{1}{n} = 0.000001, \qquad \frac{1}{n^2} = 0.000000000001,$$

$$n = 10000000000 \implies \frac{1}{n} = 0.000000001, \qquad \frac{1}{n^2} = 0.00000000000000000001,$$

$$\vdots$$

More precisely,

$$\lim_{n \to \infty} \frac{1}{n} = 0, \qquad \lim_{n \to \infty} \frac{1}{n^2} = 0.$$

Hence

$$\lim_{n \to \infty} \left(\frac{1}{3} + \frac{1}{2} \cdot \frac{1}{n} + \frac{1}{6} \cdot \frac{1}{n^2} \right) x^2 = \frac{1}{3} x^2.$$

• Summary.

" <u>For</u>

$$f\left(x\right) = x^{2},$$

$$\underline{\text{the mean of}} \quad f\left(\frac{x}{n}\right), \ f\left(\frac{2x}{n}\right), \ f\left(\frac{3x}{n}\right), \ \cdots, \ f\left(\frac{nx}{n}\right), \quad \underline{\underline{as}} \quad n \longrightarrow \infty,$$

$$\underline{\underline{is}}$$

$$\underline{\frac{1}{3}}x^{2}.$$

Notation. For a given f(x), the notation $M_n(f)(x)$ stands for the mean of

$$f\left(\frac{x}{n}\right), f\left(\frac{2x}{n}\right), f\left(\frac{3x}{n}\right), \dots, f\left(\frac{nx}{n}\right).$$

Also, the notation M(f)(x) stands for the limit

$$\lim_{n \to \infty} M_n(f)(x).$$

Results.

(1)
$$f(x) = x \implies M_n(f)(x) = \left(\frac{1}{2} + \frac{1}{2} \cdot \frac{1}{n}\right) x,$$

$$M(f)(x) = \frac{1}{2} x.$$

(2)
$$f(x) = x^2 \implies M_n(f)(x) = \left(\frac{1}{3} + \frac{1}{2} \cdot \frac{1}{n} + \frac{1}{6} \cdot \frac{1}{n^2}\right) x^2,$$

$$M(f)(x) = \frac{1}{3} x^2.$$

(3)
$$f(x) = x^3 \implies M_n(f)(x) = \left(\frac{1}{4} + \frac{1}{2} \cdot \frac{1}{n} + \frac{1}{4} \cdot \frac{1}{n^2}\right) x^3,$$

$$M(f)(x) = \frac{1}{4} x^3.$$

(4)
$$f(x) = x^4 \implies M_n(f)(x) = \left(\frac{1}{5} + \frac{1}{2} \cdot \frac{1}{n} + \frac{1}{3} \cdot \frac{1}{n^2} - \frac{1}{30} \cdot \frac{1}{n^4}\right) x^4,$$

$$M(f)(x) = \frac{1}{5} x^4.$$

(5)
$$f(x) = x^5 \implies M_n(f)(x) = \left(\frac{1}{6} + \frac{1}{2} \cdot \frac{1}{n} + \frac{5}{12} \cdot \frac{1}{n^2} - \frac{1}{12} \cdot \frac{1}{n^4}\right) x^5,$$

$$M(f)(x) = \frac{1}{6} x^5.$$

Q. Find $M_n(f)(x)$ and M(f)(x) for

$$(6) f(x) = x^6.$$

$\left[\begin{array}{c} \mathbf{Answer} \end{array}\right]:$

$$M_n(f)(x) = \left(\frac{1}{7} + \frac{1}{2} \cdot \frac{1}{n} + \frac{1}{2} \cdot \frac{1}{n^2} - \frac{1}{6} \cdot \frac{1}{n^4} + \frac{1}{42} \cdot \frac{1}{n^6}\right) x^6,$$

$$M(f)(x) = \frac{1}{7} x^6.$$

• §35. Trigonometry – IV. Definite integrals.

Axiom 1.
$$\cos (\theta - \phi) = (\cos \theta)(\cos \phi) + (\sin \theta)(\sin \phi)$$

Axiom 2.
$$\sin (\theta - \phi) = (\sin \theta)(\cos \phi) - (\cos \theta)(\sin \phi)$$

Axiom 3.
$$\cos (\theta + \phi) = (\cos \theta)(\cos \phi) - (\sin \theta)(\sin \phi)$$

Axiom 4.
$$\sin (\theta + \phi) = (\sin \theta)(\cos \phi) + (\cos \theta)(\sin \phi)$$

Double angle formula for cos.

$$\cos\left(2\theta\right) = \left(\cos\theta\right)^2 - \left(\sin\theta\right)^2$$

Double angle formula for cos – version 2.

$$\cos\left(2\theta\right) = 2\left(\cos\theta\right)^2 - 1$$

Double angle formula for cos – version 3.

$$\cos\left(2\theta\right) = 1 - 2\left(\sin\theta\right)^2$$

Double angle formula for sin.

$$\sin \left(2\theta\right) = 2\left(\cos \theta\right)\left(\sin \theta\right)$$

Formula A.
$$2(\cos \theta)(\cos \phi) = \cos(\theta - \phi) + \cos(\theta + \phi)$$

Formula B.
$$2 (\sin \theta) (\sin \phi) = \cos (\theta - \phi) - \cos (\theta + \phi)$$

Formula C.
$$2 \left(\sin \theta \right) \left(\cos \phi \right) = \sin \left(\theta - \phi \right) + \sin \left(\theta + \phi \right)$$

Formula D.
$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1.$$

Notation. For a given f(x), the notation $M_n(f)(x)$ stands for the mean of

$$f\left(\frac{x}{n}\right), f\left(\frac{2x}{n}\right), f\left(\frac{3x}{n}\right), \dots, f\left(\frac{nx}{n}\right).$$

Also, the notation M(f)(x) stands for the limit

$$\lim_{n \to \infty} M_n(f)(x).$$

Formula. Let n be a positive integer; $n = 1, 2, 3, 4, \cdots$. Let

$$f(x) = x^n.$$

Then we have

$$M(f)(x) = \frac{1}{n+1}x^n$$

Fact. For

$$f(x) = \cos x,$$

we have

$$\begin{cases} M_n(f)(x) = \frac{\left(\sin\frac{x}{2}\right)\left(\cos\left(\frac{x}{2} + \frac{x}{2n}\right)\right)}{n\left(\sin\frac{x}{2n}\right)}, \\ M(f)(x) = \frac{\sin x}{x}. \end{cases}$$

Fact. For

$$g(x) = \sin x,$$

we have

$$\begin{cases} M_n(g)(x) = \frac{\left(\sin\frac{x}{2}\right)\left(\sin\left(\frac{x}{2} + \frac{x}{2n}\right)\right)}{n\left(\sin\frac{x}{2n}\right)}, \\ M(g)(x) = \frac{1-\cos x}{x}. \end{cases}$$

• Definite integrals.

Definition. The <u>definite integral</u> of f(t) over the interval $\begin{bmatrix} 0, & x \end{bmatrix}$ is simply

$$\int_{t=0}^{x} f(t) dt = x \cdot M(f)(x).$$

If you apply this definition, then we immediately get

Formula. Let n be a positive integer; $n = 1, 2, 3, 4, \cdots$. Then

$$\int_{t=0}^{x} t^{n} dt = \frac{1}{n+1} x^{n+1}.$$

Formula.

$$\int_{t=0}^{x} \cos t \ dt = \sin x, \qquad \int_{t=0}^{x} \sin t \ dt = 1 - \cos x.$$

Example.
$$\int_{t=0}^{1} t^2 dt = \frac{1}{2+1} 1^{2+1} = 3.$$

Example.
$$\int_{t=0}^{2} t^4 dt = \frac{1}{4+1} 2^{4+1} = \frac{32}{5}.$$

Example.
$$\int_{t=0}^{\frac{\pi}{2}} \cos t \ dt = \sin \frac{\pi}{2} = 1.$$

Example.
$$\int_{t=0}^{\frac{\pi}{3}} \cos t \, dt = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}.$$

Example.
$$\int_{t=0}^{\frac{\pi}{2}} \sin t \, dt = 1 - \cos \frac{\pi}{2} = 1.$$

Example.
$$\int_{t=0}^{\frac{\pi}{3}} \sin t \, dt = 1 - \cos \frac{\pi}{3} = \frac{1}{2}.$$

Q. Evaluate

(1)
$$\int_{t=0}^{4} t \ dt.$$
 (2)
$$\int_{t=0}^{7} t^{3} \ dt.$$

(3)
$$\int_{t=0}^{\frac{\pi}{4}} \cos t \, dt. \qquad (4) \int_{t=0}^{\frac{\pi}{6}} \cos t \, dt.$$

(5)
$$\int_{t=0}^{\frac{\pi}{4}} \sin t \, dt. \qquad (6) \int_{t=0}^{\frac{\pi}{6}} \sin t \, dt.$$

[Answers]: (1) 8. (2)
$$\frac{2401}{4}$$
. (3) $\frac{1}{\sqrt{2}}$.

(4)
$$\frac{1}{2}$$
. (5) $1 - \frac{1}{\sqrt{2}}$. (6) $1 - \frac{\sqrt{3}}{2}$.

• Recall

Fundamental theorem.

Suppose an antiderivative of f(t) is F(t). Then

$$\int_{t=y}^{x} f(t) dt = F(x) - F(y).$$

Notation. It is convenient to write the above theorem as

$$\int_{t=y}^{x} f(t) dt = \left[F(t) \right]_{t=y}^{x}.$$

$$\underline{\underline{\text{Here}}}, \quad \left[F(t) \right]_{t=y}^{x} \quad \underline{\underline{\text{simply means}}} \quad F(x) - F(y).$$

Let's use some examples to illustrate how the evaluation goes:

Example.
$$\int_{t=2}^{3} t^2 dt = \left[\frac{1}{3} t^3 \right]_{t=2}^{3}$$

$$= \frac{1}{3}3^3 - \frac{1}{3}2^3 = \frac{19}{3}.$$

$$\int_{t=-1}^{1} t^{6} dt = \left[\frac{1}{7} t^{7} \right]_{t=-1}^{1}$$

$$= \frac{1}{7} 1^{7} - \frac{1}{7} (-1)^{7}$$

$$= \frac{2}{7}.$$

• The following is inferred by what we have worked out today and 'Fundamental Theorem' above.

Quick Facts.

(1) An antiderivative of
$$\cos x$$
 is $\sin x$

(2) An antiderivative of
$$\sin x$$
 is $-\cos x$

$$\int_{t=\frac{\pi}{6}}^{\frac{\pi}{2}} \cos t \, dt = \left[\sin t \right]_{t=\frac{\pi}{6}}^{\frac{\pi}{2}}$$

$$= \sin \frac{\pi}{2} - \sin \frac{\pi}{6}$$

$$= 1 - \frac{1}{2} = \frac{1}{2}.$$

$$\int_{t=-\frac{\pi}{4}}^{\frac{\pi}{2}} \sin t \, dt = \left[-\cos t \right]_{t=-\frac{\pi}{4}}^{\frac{\pi}{2}}$$

$$= \left(-\cos \frac{\pi}{2} \right) - \left(-\cos \left(-\frac{\pi}{4} \right) \right)$$

$$= 0 - \left(-\frac{1}{\sqrt{2}} \right) = \frac{1}{\sqrt{2}}.$$

Q. Evaluate

(1)
$$\int_{t=-2}^{1} t^2 dt.$$

(2)
$$\int_{t=1}^{\frac{3}{2}} t^5 dt.$$

(3)
$$\int_{t=\frac{\pi}{4}}^{\frac{\pi}{3}} \cos t \, dt.$$

$$\int_{t=-\frac{\pi}{6}}^{\frac{\pi}{2}} \cos t \ dt.$$

(5)
$$\int_{t=\frac{\pi}{6}}^{\frac{\pi}{4}} \sin t \, dt.$$

(6)
$$\int_{t=-\frac{\pi}{4}}^{\frac{\pi}{2}} \sin t \, dt.$$

$$[$$
 Answers $]$

(2)
$$\frac{665}{384}$$

[Answers]: (1) 3. (2)
$$\frac{665}{384}$$
. (3) $\frac{\sqrt{3} - \sqrt{2}}{2}$.

$$(4) \qquad \frac{3}{2}.$$

(4)
$$\frac{3}{2}$$
. (5) $\frac{\sqrt{3} - \sqrt{2}}{2}$. (6) $\frac{1}{\sqrt{2}}$.

$$(6) \qquad \frac{1}{\sqrt{2}}$$

• $\S 36$. Trigonometry – V.

Example.
$$\int_{t=0}^{1} (t^3 + t^2) dt = \left(\int_{t=0}^{1} t^3 dt \right) + \left(\int_{t=0}^{1} t^2 dt \right)$$
$$= \left[\frac{1}{4} t^4 \right]_{t=0}^{1} + \left[\frac{1}{3} t^3 \right]_{t=0}^{1}$$
$$= \frac{1}{4} \cdot 1^4 + \frac{1}{3} \cdot 1^3 = \frac{7}{12}.$$

 \star You can do it the following way:

$$\int_{t=0}^{1} \left(t^3 + t^2 \right) dt = \left[\frac{1}{4} t^4 + \frac{1}{3} t^3 \right]_{t=0}^{1}$$
$$= \frac{1}{4} \cdot 1^4 + \frac{1}{3} \cdot 1^3 = \frac{7}{12}.$$

Example.
$$\int_{t=-1}^{4} (t^4 + 1) dt = \left(\int_{t=-1}^{4} t^4 dt \right) + \left(\int_{t=-1}^{4} 1 dt \right)$$

$$= \left[\frac{1}{5} t^5 \right]_{t=-1}^{4} + \left[t \right]_{t=-1}^{4}$$

$$= \left(\frac{1}{5} \cdot 4^5 - \frac{1}{5} \cdot \left(-1 \right)^5 \right) + \left(4 - \left(-1 \right) \right)$$

$$= 210.$$

★ You can do it the following way:

$$\int_{t=-1}^{4} (t^4 + 1) dt = \left[\frac{1}{5} t^5 + t \right]_{t=-1}^{4}$$

$$= \left(\frac{1}{5} \cdot 4^5 + 4 \right) - \left(\frac{1}{5} \cdot (-1)^5 + (-1) \right)$$

$$= 210.$$

Example.

$$\int_{t=0}^{2} 2t^3 dt = 2 \left(\int_{t=0}^{2} t^3 dt \right)$$

$$= 2 \cdot \left[\frac{1}{4} t^4 \right]_{t=0}^{2}$$

$$= 2 \cdot \left(\frac{1}{4} \cdot 2^4 \right)$$

$$= 8.$$

 \star You can do it the following way:

$$\int_{t=0}^{2} 2t^{3} dt = \left[\frac{1}{2} t^{4} \right]_{t=0}^{2}$$
$$= \frac{1}{2} \cdot 2^{4}$$
$$= 8.$$

Example.
$$\int_{t=0}^{\frac{\pi}{3}} \left(2\cos t + 3\sin t \right) dt$$

$$= 2 \left(\int_{t=0}^{\frac{\pi}{3}} \cos t \, dt \right) + 3 \left(\int_{t=0}^{\frac{\pi}{3}} \sin t \, dt \right)$$

$$= 2 \cdot \left[\sin t \right]_{t=0}^{\frac{\pi}{3}} + 3 \cdot \left[-\cos t \right]_{t=0}^{\frac{\pi}{3}}$$

$$= 2 \cdot \left(\left(\sin \frac{\pi}{3} \right) - \left(\sin 0 \right) \right) + 3 \cdot \left(\left(-\cos \frac{\pi}{3} \right) - \left(-\cos 0 \right) \right)$$

$$= 2 \cdot \left(\frac{\sqrt{3}}{2} - 0 \right) + 3 \cdot \left(\left(-\frac{1}{2} \right) - \left(-1 \right) \right)$$

$$= \sqrt{3} + \frac{3}{2}.$$

★ You can do it the following way:

$$\int_{t=0}^{\frac{\pi}{3}} \left(2\cos t + 3\sin t \right) dt$$

$$= \left[2\sin t - 3\cos t \right]_{t=0}^{\frac{\pi}{3}}$$

$$= \left(2\left(\sin\frac{\pi}{3}\right) - 3\left(\cos\frac{\pi}{3}\right) \right) - \left(2\left(\sin 0\right) - 3\left(\cos 0\right) \right)$$

$$= \left(2 \cdot \frac{\sqrt{3}}{2} - 3 \cdot \frac{1}{2} \right) - \left(2 \cdot 0 - 3 \cdot 1 \right) = \sqrt{3} + \frac{3}{2}.$$

Q. Evaluate

(1)
$$\int_{t=3}^{5} \left(t^2 + 2t\right) dt.$$
 (2)
$$\int_{t=0}^{\frac{3}{2}} \left(4t^3 - 3t^2\right) dt.$$

(3)
$$\int_{t=0}^{1} \left(t^3 - \frac{3}{2} t^2 + \frac{1}{2} t \right) dt.$$

(4)
$$\int_{t=-1}^{0} \frac{(t+1)(t+2)(t+3)}{3!} dt.$$

(5)
$$\int_{t=\frac{\pi}{6}}^{\frac{\pi}{3}} \left(3\cos t - 4\sin t\right) dt.$$

(6)
$$\int_{t=0}^{\frac{\pi}{2}} \left(\frac{1}{\sqrt{2}} \cos t + \frac{1}{\sqrt{2}} \sin t \right) dt.$$

[Answers]:
$$(1)$$
 $\frac{146}{3}$. (2) $\frac{27}{16}$. (3) $\frac{9}{64}$.

(4)
$$\frac{3}{8}$$
. (5) $\frac{1-\sqrt{3}}{2}$. (6) $\sqrt{2}$.

• Next, I show you something which looks innocuous but is extremely important:

Important Formula.

$$\frac{d}{dx}\cos x = -\sin x$$
 , and $\frac{d}{dx}\sin x = \cos x$

$\S 37.$ Trigonometry – VI.

Last topic:

"congruence."

We say

- 5 is congruent to 1 modulo 4, because 5-1=4 is divisible by 4.
- 8 is congruent to 1 modulo 7, because 8-1=7 is divisible by 7.
- 29 is congruent to 5 modulo 8, because 29-5=24 is divisible by 8.
- 32 is congruent to 2 modulo 15, because 32-2=30 is divisible by 15.
- 15 is congruent to 3 modulo 6, because 15-3=12 is divisible by 6.
- 28 is congruent to 0 modulo 7, because 28 0 = 28 is divisible by 7.

Write these as

$$5 \equiv 1$$

$$8 \equiv 1$$

$$29 \equiv 5$$

$$5 \equiv 1,$$
 $8 \equiv 1,$ $29 \equiv 5,$ $32 \equiv 2,$ $15 \equiv 3,$ $28 \equiv 0.$

$$15 \equiv 3$$

$$28 \equiv 0$$

More generally, let a, b and r be integers, and $r \geq 2$. We say

" a is congruent to b \underline{modulo} r,

 $\underline{\underline{if}}$ a-b $\underline{\underline{is\ divisible\ by}}$ r. We write

$$a \equiv b$$
 .

Exercise 1. True or false:

(1)
$$22 \equiv 0.$$
 (2) $13 \equiv 3.$ (3) $100 \equiv 0.$

(2)
$$13 \equiv 3$$

$$100 \equiv 0.$$

(4)
$$17 \equiv 2$$
. (5) $64 \equiv 4$. (6) $121 \equiv 10$.

$$(5) \quad 64 \equiv 4$$

$$121 \equiv 10.$$

Answers :

(1)False. (2) False.

(3)True.

(4)True. (5)True. (6)True.

Today I am going to rely on the notion of 'congruence modulo 4'. Agree that

 $0, 4, 8, 12, 16, 20, 24, 28, \cdots$ are all congruent to 0 modulo 4,

 $1, 5, 9, 13, 17, 21, 25, 29, \cdots$ are all congruent to $1 \mod 4$,

 $2, \quad 6, \quad 10, \quad 14, \quad 18, \quad 22, \quad 26, \quad 30, \quad \cdots \quad \text{ are all congruent to } 2 \quad \text{modulo } 4,$

3, 7, 11, 15, 19, 23, 27, 31, \cdots are all congruent to 3 modulo 4.

Recall the following: Let x be an arbitrary real number. Then

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \frac{1}{8!}x^8 - \frac{1}{10!}x^{10} + \cdots$$

and

$$\sin x = \frac{1}{1!}x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \frac{1}{9!}x^9 - \frac{1}{11!}x^{11} + \cdots$$

I said these can be the definition of $\sin x$ and $\cos x$. Meanwhile, let's recall (from "Review of Lectures – XVIII"):

$$e^x = 1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \frac{1}{4!}x^4 + \frac{1}{5!}x^5 + \cdots$$

The patterns in those three look alike. Is there a relation between

$$e^x$$
, $\cos x$ and $\sin x$?

If you just stay within the real numbers, you cannot find any relationship. As for this, remember that I briefly touched the subject of complex numbers, and more specifically the role of the unit imaginary number $\sqrt{-1}$, in "Review of Lectures – XV". An important role is played by not just $\sqrt{-1}$ alone, but its powers. When it comes to the powers, $\sqrt{-1}$ and -1 are in sync with each other. Let's recall:

• $\left(-1\right)$ -to-the-powers. We have $\begin{pmatrix} -1 \end{pmatrix}^{1} = -1,$ $\begin{pmatrix} -1 \end{pmatrix}^{2} = 1,$ $\begin{pmatrix} -1 \end{pmatrix}^{3} = -1,$ $\begin{pmatrix} -1 \end{pmatrix}^{4} = 1,$ $\begin{pmatrix} -1 \end{pmatrix}^{5} = -1,$ $\begin{pmatrix} -1 \end{pmatrix}^{6} = 1,$ $\begin{pmatrix} -1 \end{pmatrix}^{7} = -1,$ $\begin{pmatrix} -1 \end{pmatrix}^{8} = 1,$ $\vdots : \vdots$

In short,

$$\left(-1\right)^n = \begin{cases} 1 & \left(\text{if } n \text{ is } \underline{\text{even}}\right), \\ -1 & \left(\text{if } n \text{ is } \underline{\text{odd}}\right). \end{cases}$$

• $(\sqrt{-1})$ -to-the-powers. Here, we adopt the unit imaginary number

$$i = \sqrt{-1}$$
.

This number is 'defined' as

$$i^2 = -1$$

So,

$$i^{1} = i$$

$$i^{2} = -1$$

$$i^{3} = -i$$

$$i^3 = -i,$$

$$i^4 = 1,$$

$$i^5 = i$$
,

$$i^6 = -1,$$

$$i^7 = -i$$

$$i^8 = 1,$$

$$i^9 = i,$$

$$i^{10} = -1,$$

$$i^{11} = -i$$

$$i^{12} = 1,$$

፥

In short,

$$i^{n} = \begin{cases} 1 & \left(\text{if } n \equiv 0\right), \\ i & \left(\text{if } n \equiv 1\right), \\ -1 & \left(\text{if } n \equiv 2\right), \\ -i & \left(\text{if } n \equiv 3\right). \end{cases}$$

With that in mind, why don't we substitute x with ix in

$$e^{x} = 1 + \frac{1}{1!}x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \frac{1}{4!}x^{4} + \frac{1}{5!}x^{5} + \frac{1}{6!}x^{6} + \frac{1}{7!}x^{7}$$

$$+ \frac{1}{8!}x^{8} + \frac{1}{9!}x^{9} + \frac{1}{10!}x^{10} + \frac{1}{11!}x^{11} + \frac{1}{12!}x^{12} + \frac{1}{13!}x^{13} + \frac{1}{14!}x^{14} + \frac{1}{15!}x^{15}$$

$$\frac{1}{16!}x^{16} + \frac{1}{17!}x^{17} + \frac{1}{18!}x^{18} + \frac{1}{19!}x^{19} + \frac{1}{20!}x^{20} + \frac{1}{21!}x^{21} + \frac{1}{22!}x^{22} + \frac{1}{23!}x^{23}$$

$$\frac{1}{24!}x^{24} + \frac{1}{25!}x^{25} + \frac{1}{26!}x^{26} + \frac{1}{27!}x^{27} + \frac{1}{28!}x^{28} + \frac{1}{29!}x^{29} + \frac{1}{30!}x^{30} + \frac{1}{31!}x^{31}$$

$$\frac{1}{32!}x^{32} + \frac{1}{33!}x^{33} + \frac{1}{34!}x^{34} + \frac{1}{35!}x^{35} + \frac{1}{36!}x^{36} + \frac{1}{37!}x^{37} + \frac{1}{38!}x^{38} + \frac{1}{39!}x^{39}$$

$$+ \cdots$$

The outcome is

$$e^{ix} = \left(1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \frac{1}{8!}x^8 - \frac{1}{10!}x^{10} + \frac{1}{12!}x^{12} - \frac{1}{14!}x^{14} + \frac{1}{16!}x^{16} - \frac{1}{18!}x^{18} + \frac{1}{20!}x^{20} - \frac{1}{22!}x^{22} + \frac{1}{24!}x^{24} - \frac{1}{26!}x^{26} + \frac{1}{28!}x^{28} - \frac{1}{30!}x^{30} + \frac{1}{32!}x^{32} - \frac{1}{34!}x^{34} + \frac{1}{36!}x^{36} - \frac{1}{38!}x^{38} + \cdots\right)$$

$$+ i\left(\frac{1}{1!}x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \frac{1}{9!}x^9 - \frac{1}{11!}x^{11} + \frac{1}{13!}x^{13} - \frac{1}{15!}x^{15} + \frac{1}{17!}x^{17} - \frac{1}{19!}x^{19} + \frac{1}{21!}x^{21} - \frac{1}{23!}x^{23} + \frac{1}{25!}x^{25} - \frac{1}{27!}x^{27} + \frac{1}{29!}x^{29} - \frac{1}{31!}x^{31} + \frac{1}{33!}x^{33} - \frac{1}{35!}x^{35} + \frac{1}{37!}x^{37} - \frac{1}{39!}x^{39} + \cdots\right).$$

This is clearly

$$\left(\cos x\right) + i\left(\sin x\right).$$

This way we obtain

Euler's formula.
$$e^{ix} = (\cos x) + i(\sin x)$$

Now, this is not entirely absurd. On the contrary, this is actually very illuminating. Indeed, let

$$\alpha = e^{ix}, \qquad \beta = e^{iy}.$$

Then

$$\alpha \beta = e^{ix} e^{iy}$$

$$= \left(\left(\cos x \right) + i \left(\sin x \right) \right) \left(\left(\cos y \right) + i \left(\sin y \right) \right).$$

Let's expand this, taking into account $i^2 = -1$:

$$(*) \qquad \alpha \beta = \left[\left(\cos x \right) \left(\cos y \right) - \left(\sin x \right) \left(\sin y \right) \right]$$

$$+ i \left[\left(\cos x \right) \left(\sin y \right) + \left(\sin x \right) \left(\cos y \right) \right].$$

And that was just simply the multiplication. But then suddenly let's compare this with

Axiom 3.
$$\cos (x+y) = (\cos x)(\cos y) - (\sin x)(\sin y)$$
. Axiom 4.
$$\sin (x+y) = (\sin x)(\cos y) + (\cos x)(\sin y)$$
.

You realize that the right-hand side of the identity (*) on the past page is

$$\left(\cos\left(x+y\right)\right) + i\left(\sin\left(x+y\right)\right).$$

But this is exactly $e^{i(x+y)}$. So, we have proved

Exponential Law – II. Let x and y be real numbers. Then

$$e^{ix} e^{iy} = e^{i(x+y)}$$

The original exponential law ('Rule II' in "Review of Lectures – XVIII") is

Exponential Law (Original). Let x and y be real numbers. Then

$$e^x e^y = e^{x+y}$$

These two resemble each other. Actually, this is more than a resemblance. These two are considered to be a single formula branching off in two different directions. So we call both of these formulas 'Exponential Law'. In that sense, in retrospect, 'Axiom 3' and 'Axiom 4' combined was a disguised form of the exponential law.