
Math 290 ELEMENTARY LINEAR ALGEBRA

STUDY GUIDE FOR MIDTERM EXAM – B

September 27 (Wed), 2017

Instructor: Yasuyuki Kachi

Line #: 25751.

§6. Product Formula. Associativity Law (Continued).

• Associativity Law.

For three matrices

A =

[

a b
c d

]

, B =

[

p q
r s

]

, C =

[

x y
z w

]

,

it doesn’t matter whether you

(i) calculate ABC as
(

AB
)

C, or

(ii) calculate ABC as A
(

BC
)

,

you will end up getting the same answer.

Formula 2 (Associativity Law). For

A =

[

a b
c d

]

, B =

[

p q
r s

]

, C =

[

x y
z w

]

,

we have

(

AB
)

C = A
(

BC
)

.
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Proof.

(

AB
)

C =

([

a b
c d

] [

p q
r s

]) [

x y
z w

]

=

[

ap + br aq + bs
cp + dr cq + ds

] [

x y
z w

]

=

[

apx + brx + aqz + bsz apy + bry + aqw + bsw
cpx + drx + cqz + dsz cpy + dry + cqw + dsw

]

,

and

A
(

BC
)

=

[

a b
c d

] ([

p q
r s

] [

x y
z w

])

=

[

a b
c d

] [

px + qz py + qw
rx + sz ry + sw

]

=

[

apx + aqz + brx + bsz apy + aqw + bry + bsw
cpx + cqz + drx + dsz cpy + cqw + dry + dsw

]

.

These two outcomes indeed coincide. �

• We know that the same is true for numbers, as in

(

2 · 3
)

· 5 = 2 ·
(

3 · 5
)

.

More generally, if a, b and c are numbers
(

real numbers, to be precise
)

, then

(

a · b
)

· c = a ·
(

b · c
)

.

Granted, it is still imperative that you pay heed to the above formula, and learn how
to prove it, for at least two different reasons.
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Reason 1. When you generalize something from numbers to matrices, you are
going to lose some of the properties. In general AB 6= BA for matrices A and B.
Needless to say, ab = ba for numbers a and b. So you need to keep track of both

(a) those properties that are carried over from numbers to matrices, and (b) those

that aren’t.

Reason 2. There is actually a number system wherein

(

a · b
)

· c 6= a ·
(

b · c
)

.

(

octonion numbers
/

octonions
/

Cayley numbers
)

. You don’t have to know what

that is. On the other hand, quaternions are a must. They are more basic than
octonions. We are going to address quaternions in due course.

Definition. Define ABC as either A
(

BC
)

, or equivalently,
(

AB
)

C.

• Multiplications of four or more matrices. For

A =

[

a1 b1
c1 d1

]

, B =

[

a2 b2
c2 d2

]

, C =

[

a3 b3
c3 d3

]

, D =

[

a4 b4
c4 d4

]

,

it doesn’t matter whether you

(i) calculate ABCD as
(

(

AB
)

C
)

D,

(ii) calculate ABCD as
(

A
(

BC
)

)

D,

(iii) calculate ABCD as A
(

(

BC
)

D
)

,

(iv) calculate ABCD as A
(

B
(

CD
)

)

, or

(v) calculate ABCD as
(

AB
)(

CD
)

.

You will end up getting the same answer.
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Exercise (= “VI”; Exercise 2). Explain why (i–v) all coincide.

[[[

Hint
]]]

: First explain why (i) and (ii) are the same. For that matter, it suffices

to say (i) and (ii) are both
(

ABC
)

D. Next, explain why (iii) and (iv) are the same
(

same logic
)

. Next, explain why (i) and (v) are the same
(

set AB = E
)

. Finally,

explain why (iv) and (v) are the same
(

set CD = F
)

.

Corollary. Let A, B, C, D be as above. Then

(

(

AB
)

C
)

D =
(

A
(

BC
)

)

D = A
(

(

BC
)

D
)

= A
(

B
(

CD
)

)

=
(

AB
)(

CD
)

.

Definition. Define ABCD as

ABCD =
(

(

AB
)

C
)

D =
(

A
(

BC
)

)

D = A
(

(

BC
)

D
)

= A
(

B
(

CD
)

)

=
(

AB
)(

CD
)

.

• Consecutive product. Similarly, for

A1 =

[

a1 b1
c1 d1

]

, A2 =

[

a2 b2
c2 d2

]

, A3 =

[

a3 b3
c3 d3

]

, ··· , Ak =

[

ak bk
ck dk

]

,

define A1 A2 A3 · · ·Ak−1Ak as

A1 A2 A3 · · ·Ak−1Ak =

(

(

(

··
(

(A1 A2)A3

)

· · ·
)

Ak−2

)

Ak−1

)

Ak

= A1

(

A2

(

A3

(

· · ·
(

Ak−2 (Ak−1 Ak)
)

··
)

)

)

.
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Exercise (= “VI”; Exercise 3). Let

A =

[

1 0
1 1

]

, B =

[

1 1
1 0

]

, C =

[

1 1
0 1

]

, D =

[

0 1
1 1

]

.

Calculate

(1) AB. (2) BC. (3) CD.

(4) ABC. (5) BCD. (6) ABCD.

• Powers. As a special case of

A1A2A3 ··· Ak,

we may consider the following: For A =

[

a b
c d

]

, define

A1 = A,

A2 = AA,

A3 = AAA,

A4 = AAAA,

···

Ak = A A A ··· A .
x yk

Example3. For I =

[

1 0
0 1

]

,

Ik = I, for k = 1, 2, 3, · · · .

Paraphrase:
[

1 0
0 1

]k

=

[

1 0
0 1

]

, for k = 1, 2, 3, · · · .
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• More formulas.

Formula 3. Let t and u be scalars. Let

A =

[

a b
c d

]

, B =

[

p q
r s

]

.

Then

(

tA
)(

uB
)

=
(

tu
)

(

AB
)

.

Corollary. Let A =

[

a b
c d

]

, and t a scalar. Then for k = 1, 2, 3, ···,

(

t A
)k

= tk Ak.

Example. In Corollary above, if you set A = I, then

A =

[

t 0
0 t

]

=⇒ Ak =

[

tk 0
0 tk

]

.

Exercise (= “VI”; Exercise 4). Let A =

[

a 0
0 b

]

. For k = 1, 2, 3, ···,
prove

(∗)k Ak =

[

ak 0
0 bk

]

,

via mathematical induction. Practically, do (i) and (ii) below:

(i) Prove that (∗)1
(

= (∗)k for k = 1
)

is true.

(ii) Assume that (∗)k is true, and with that assumption prove that (∗)k+1 is true.

Exercise (= “VI”; Exercise 5). For k = 1, 2, 3, ···, find

(1)

[

2 0
0 5

]k

. (2)

[

1 a
0 1

]k

. (3)

[

2 a
0 2

]k

.

[[[

Hint for (2)
]]]

: First verify

[

1 a
0 1

] [

1 b
0 1

]

=

[

1 a+b
0 1

]

.
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Exercise (= “VI”; Exercise 6).

(1) True or False.
(

AB
)2

= A2B2.

(2) Suppose AB = BA. True or False.
(

AB
)2

= A2B2.

§7. Matrix addition & subtraction. Distributive Law.

Definition (Matrix addition/subtraction).

For A =

[

a b
c d

]

, and B =

[

p q
r s

]

, define

A + B =

[

a + p b + q
c + r d + s

]

,

A − B =

[

a − p b − q
c − r d − s

]

.

Example. For A =

[

1 2
2 1

]

, B =

[

−3 −2
4 2

]

, we have

A + B =

[

1 +
(

− 3
)

2 +
(

− 2
)

2 + 4 1 + 2

]

=

[

−2 0
6 3

]

,

A − B =

[

1 −
(

− 3
)

2 −
(

− 2
)

2 − 4 1 − 2

]

=

[

4 4
−2 −1

]

.

Warning 1. In general,

det A + det B and det
(

A + B
)

are not equal.

det A − det B and det
(

A − B
)

are not equal.
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Exercise (= “VII”; Exercise 1). For A =

[

1 3
2 −4

]

, and B =

[

2 6
2 3

]

,

calculate

(1) A + B, (2) det
(

A+B
)

based on (1), (3) detA + detB.

Do the answer for (2) and the answer for (3) coincide? Also calculate

(4) A − B, (5) det
(

A−B
)

based on (4), (6) detA − detB.

Do the answer for (5) and the answer for (6) coincide?

Quiz. Recall I =

[

1 0
0 1

]

. Let A =

[

3 1
4 6

]

. Write out λI − A.

Solution. Since

λI =

[

λ 0
0 λ

]

, and A =

[

3 1
4 6

]

,

So

λI − A =

[

λ−3 0−1
0−4 λ−6

]

=

[

λ−3 −1
−4 λ−6

]

.

Quiz. (1) Calculate the determinant of λI − A =

[

λ−3 −1
−4 λ−6

]

.

(2) Solve the equation

∣

∣

∣

∣

λ−3 −1
−4 λ−6

∣

∣

∣

∣

= 0.

Solution. (1):

∣

∣

∣

∣

λ−3 −1
−4 λ−6

∣

∣

∣

∣

=
(

λ − 3
)(

λ − 6
)

−
(

−1
)

·
(

−4
)

=
(

λ2 − 9λ + 18
)

− 4 = λ2 − 9λ + 14.
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(2) Factor λ2 − 9λ + 14:

λ2 − 9λ + 14 =
(

λ−2
)(

λ−7
)

.

So the roots for the equation
∣

∣

∣

∣

λ−3 −1
−4 λ−6

∣

∣

∣

∣

= 0

are

λ = 2, and λ = 7. �

◦ λ = 2, λ = 7 are called the eigenvalues of the matrix A =

[

3 1
4 6

]

.

◦ det
(

λI − A
)

= λ2 − 9λ + 14 is called the characteristic polynomial of A.

◦ λ2 − 9λ + 14 = 0 is called the characteristic equation of A.

Terminology. Let A =

[

a b
c d

]

. (i) the characteristic polynomial

of A means det
(

λI − A
)

, or the same to say,

∣

∣

∣

∣

λ−a −b
−c λ−d

∣

∣

∣

∣

.

(ii) the characteristic equation of A means det
(

λI − A
)

= 0, or

the same to say,

∣

∣

∣

∣

λ−a −b
−c λ−d

∣

∣

∣

∣

= 0.

(iii) the eigenvalues of A mean the roots of det
(

λI − A
)

= 0, or

the same to say, the roots of

∣

∣

∣

∣

λ−a −b
−c λ−d

∣

∣

∣

∣

= 0.
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Warning 2. Don’t ever simplify det
(

λI−A
)

as det
(

λI
)

− detA. That would

be incorrect. Also, a formation like det
(

λI
)

− detA is of little significance.

Notation χAχAχA

(((

λλλ
)))

for the characteristic polynomial of AAA.

From now on, we denote the characteristic polynomial of A =

[

a b
c d

]

as

χA

(

λ
)

.

So,

χA

(

λ
)

= det
(

λI − A
)

.

Or, the same to say

χA

(

λ
)

=

∣

∣

∣

∣

λ−a −b
−c λ−d

∣

∣

∣

∣ .

Example. Find χA

(

λ
)

for A =

[

8 3
6 5

]

. Find the eigenvalues of A.

— Well, this is a piece of cake. Here we go:

χA

(

λ
)

=

∣

∣

∣

∣

λ−8 −3
−6 λ−5

∣

∣

∣

∣

=
(

λ−8
)(

λ−5
)

−
(

−3
)

·
(

−6
)

= λ2 − 13λ + 22.

This is factored as

χA

(

λ
)

=
(

λ − 2
)(

λ − 11
)

,

so accordingly the eigenvalues of A are found as λ = 2, and λ = 11.
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Exercise (= “VII”; Exercise 2). Find χA

(

λ
)

. Find the eigenvalues of A.

(1) A =

[

6 4
6 1

]

. (2) A =





1

2

−1

2

3

2

5

2



.

Formula 1 (Distributive Laws). For

A =

[

a1 b1
c1 d1

]

, B =

[

a2 b2
c2 d2

]

, C =

[

a3 b3
c3 d3

]

, D =

[

a4 b4
c4 d4

]

,

the following hold:

(1) A
(

B+C
)

= AB + AC,

(2)
(

B+C
)

D = BD + CD,

(3) A
(

B+C
)

D = ABD + ACD,

(4) A
(

B−C
)

= AB − AC,

(5)
(

B−C
)

D = BD − CD,

(6) A
(

B−C
)

D = ABD − ACD.

Corollary 1. Let A, B, C and D be as above. Then

(

A+B
)(

C+D
)

= AC + AD + BC + BD.

Exercise (= “VII”; Exercise 3).

(a) Prove parts (1–2) of Formula 1 above. As for part (1), calculate each of

[

a1 b1
c1 d1

] ([

a2 b2
c2 d2

]

+

[

a3 b3
c3 d3

])

, and

[

a1 b1
c1 d1

] [

a2 b2
c2 d2

]

+

[

a1 b1
c1 d1

] [

a3 b3
c3 d3

]

separately, and verify that they match. Part (2) is completely similar.
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(b) Prove that part (3) of Formula 1 is equivalent to parts (1–2) of the same

formula. So, prove “(1) implies (2–3)” and “(2–3) imply (1)” both.

Corollary 2. For A =

[

a b
c d

]

, and B =

[

p q
r s

]

,

(

A+B
)2

= A2 + AB + BA + B2.

Formula 2 (Distributive &&& Associative Laws Involving Scalars – I). For

A =

[

a b
c d

]

, B =

[

p q
r s

]

,

the following hold:

(1) −
(

A+B
)

= −A − B.

(2)
(

− A
)

B = −
(

AB
)

.

(3) A
(

− B
)

= −
(

AB
)

.

More generally, for a scalar t,

(4) t
(

A+B
)

= tA + tB.

(5)
(

tA
)

B = t
(

AB
)

.

(6) A
(

tB
)

= t
(

AB
)

.

Corollary 3. For A =

[

a b
c d

]

, and B =

[

p q
r s

]

,

(

A+B
)(

A−B
)

= A2 + BA − AB − B2.
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Example. A
(

I−B
)

C = AIC − ABC

= AC − ABC.

Example. A tweak:

A
(

2I−B
)

C = A
(

2I
)

C − ABC

= 2AC − ABC.

Example. In the above, C = A−1:

A
(

2I−B
)

A−1 = 2AA−1 − ABA−1

= 2I − ABA−1.

Example.
(

ABA−1
)2

= ABA−1ABA−1

= ABIBA−1

= ABBA−1

= AB2A−1.

Example. Add 4I:

4I +
(

ABA−1
)2

= 4I + AB2A−1.

Example. Meanwhile

A
(

4I + B2
)

A−1 = A
(

4I
)

A−1 + AB2A−1

= 4AIA−1 + AB2A−1

= 4I + AB2A−1.
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Example. Combine the last two of the above:

(#) 4I +
(

ABA−1
)2

= A
(

4I + B2
)

A−1.

If you set f
(

x
)

= 4 + x2, (#) is

(#)′ f
(

ABA−1
)

= Af
(

B
)

A−1.

More on this later.

Formula 3 (Distributive &&& Associative Laws Involving Scalars – II). For

A =

[

a1 b1
c1 d1

]

, B =

[

a2 b2
c2 d2

]

, C =

[

a3 b3
c3 d3

]

, D =

[

a4 b4
c4 d4

]

,

the following hold:

(1)
(

−A
)(

B+C
)

= −AB − AC.

(2)
(

B+C
)(

−D
)

= −BD − CD.

More generally, for a scalar t,

(3)
(

tA
)(

B+C
)

= tAB + tAC.

(4)
(

B+C
)(

tD
)

= tBD + tCD.

Also, for scalars t and u,

(5) A
(

tB+uC
)

= tAB + uAC.

(6)
(

tB+uC
)

D = tBD + uCD.
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§8. Matrix multiplication for the 3 × 3 case.

• Rule.





a1 a2 a3

b1 b2 b3
c1 c2 c3









p

q

r



 =





a1p + a2q + a3r

b1p + b2q + b3r

c1p + c2q + c3r



 .

Paraphrase:

A =





a1 a2 a3

b1 b2 b3
c1 c2 c3



, xxx =





p

q

r





=⇒ Axxx =





a1p + a2q + a3r

b1p + b2q + b3r

c1p + c2q + c3r





.

Break-down.





a1 a2 a3

b1 b2 b3
c1 c2 c3









p
q
r



 =











♦

♠

△











.

(i) To find ♦, observe

a1 a2 a3




p
q
r







 b1 b2 b3
c1 c2 c3











 =











a1p + a2q + a3r

♠











.
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(ii) To find ♠, observe

b1 b2 b3





p
q
r









a1 a2 a3

c1 c2 c3











 =











a1p + a2q + a3r

b1p + b2q + b3r

△











.

(iii) To find △, observe





p
q
r









a1 a2 a3
b1 b2 b3











 =











a1p + a2q + a3r

b1p + b2q + b3r

c1p + c2q + c3r











.
c1 c2 c3

Example. For A =





3 −6 5

−2 4 7

−1 3 9



 , xxx =





2

3

1



 , we have

Axxx =





3 −6 5

−2 4 7

−1 3 9









2

3

1





=







3 · 2 +
(

−6
)

· 3 + 5 · 1
(

−2
)

· 2 + 4 · 3 + 7 · 1
(

−1
)

· 2 + 3 · 3 + 9 · 1






=





−7
15

16



 .

Exercise (= “VIII”; Exercise 1). Perform

(1)





4 0 3

0 6 5

1 2 0









3

1

−5



. (2) Axxx, where A =





0 1 0

0 0 1

1 0 0



, xxx =





p

q

r



.

(3) Axxx, where A =





7 4 −4
−5 −2 5

2 2 3



, xxx =





4

−5
1



.
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• Next, two of the 3 × 3 matrices multiplied together.

Rule.





a1 a2 a3
b1 b2 b3
c1 c2 c3









p1 p2 p3
q1 q2 q3
r1 r2 r3



 is calculated as







a1p1 + a2q1 + a3r1 a1p2 + a2q2 + a3r2 a1p3 + a2q3 + a3r3

b1p1 + b2q1 + b3r1 b1p2 + b2q2 + b3r2 b1p3 + b2q3 + b3r3

c1p1 + c2q1 + c3r1 c1p2 + c2q2 + c3r2 c1p3 + c2q3 + c3r3







.

• Paraphrase:

A =





a1 a2 a3
b1 b2 b3
c1 c2 c3



, B =





p1 p2 p3
q1 q2 q3
r1 r2 r3





=⇒ AB =







a1p1 + a2q1 + a3r1 a1p2 + a2q2 + a3r2 a1p3 + a2q3 + a3r3

b1p1 + b2q1 + b3r1 b1p2 + b2q2 + b3r2 b1p3 + b2q3 + b3r3

c1p1 + c2q1 + c3r1 c1p2 + c2q2 + c3r2 c1p3 + c2q3 + c3r3





 .

• Break-down:

A and B are both 3 × 3 matrices =⇒ AB is a 3 × 3 matrix.

In other words:





a1 a2 a3
b1 b2 b3
c1 c2 c3









p1 p2 p3
q1 q2 q3
r1 r2 r3



 =












.
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(i) Let us find ♦ in





a1 a2 a3
b1 b2 b3
c1 c2 c3









p1 p2 p3
q1 q2 q3
r1 r2 r3





=











♦










.

Since ♦ is in the top-left, accordingly highlight the portion of A and B, like

a1 a2 a3


 b1 b2 b3
c1 c2 c3









p2 p3
q2 q3
r2 r3









p1
q1
r1





.

♦ is a1p1 + a2q1 + a3r1:





a1 a2 a3
b1 b2 b3
c1 c2 c3









p1 p2 p3
q1 q2 q3
r1 r2 r3





=











a1p1 + a2q1 + a3r1










.
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(ii) Next, let’s find ♥ in





a1 a2 a3
b1 b2 b3
c1 c2 c3









p1 p2 p3
q1 q2 q3
r1 r2 r3





=











a1p1 + a2q1 + a3r1 ♥










Since ♥ is the top-middle
(

top-row & middle-column
)

, accordingly highlight the

portion of A and B, like

a1 a2 a3


 b1 b2 b3
c1 c2 c3









p1 p3
q1 q3
r1 r3









p2
q2
r2





.

♥ is a1p2 + a2q2 + a3r2:





a1 a2 a3
b1 b2 b3
c1 c2 c3









p1 p2 p3
q1 q2 q3
r1 r2 r3





=











a1p1 + a2q1 + a3r1 a1p2 + a2q2 + a3r2










.
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(iii) Similarly, we can find ♣ in





a1 a2 a3
b1 b2 b3
c1 c2 c3









p1 p2 p3
q1 q2 q3
r1 r2 r3





=











a1p1 + a2q1 + a3r1 a1p2 + a2q2 + a3r2 ♣










as

a1 a2 a3


 b1 b2 b3
c1 c2 c3









p1 p2
q1 q2
r1 r2









p3
q3
r3





=











a1p1 + a2q1 + a3r1 a1p2 + a2q2 + a3r2 a1p3 + a2q3 + a3r3










.

(iv) Next, we can find ♠ in





a1 a2 a3
b1 b2 b3
c1 c2 c3









p1 p2 p3
q1 q2 q3
r1 r2 r3





=











a1p1 + a2q1 + a3r1 a1p2 + a2q2 + a3r2 a1p3 + a2q3 + a3r3

♠











as

20



b1 b2 b3





a1 a2 a3

c1 c2 c3









p2 p3
q2 q3
r2 r3









p1
q1
r1





=











a1p1 + a2q1 + a3r1 a1p2 + a2q2 + a3r2 a1p3 + a2q3 + a3r3

b1p1 + b2q1 + b3r1











.

Now, the rest goes the same way.

Example. For A =





1 −1 7
2 −1 8
3 1 −1



 , B =





1 1 2
2 1 1
1 −3 2



 ,

AB =





1 −1 7
2 −1 8
3 1 −1









1 1 2
2 1 1
1 −3 2





=









1 ·1 +
(

−1
)

·2 + 7 ·1 1 ·1 +
(

−1
)

·1 + 7 ·
(

−3
)

1 ·2 +
(

−1
)

·1 + 7 ·2
2 ·1 +

(

−1
)

·2 + 8 ·1 2 ·1 +
(

−1
)

·1 + 8 ·
(

−3
)

2 ·2 +
(

−1
)

·1 + 8 ·2
3 ·1 + 1 ·2 +

(

−1
)

·1 3 ·1 + 1 ·1 +
(

−1
)

·
(

−3
)

3 ·2 + 1 ·1 +
(

−1
)

·2









=





6 −21 15
8 −23 19
4 7 5



 ,

BA =





1 1 2
2 1 1
1 −3 2









1 −1 7
2 −1 8
3 1 −1





=









1 ·1 + 1 ·2 + 2 ·3 1 ·
(

−1
)

+ 1 ·
(

−1
)

+ 2 ·1 1 ·7 + 1 ·8 + 2 ·
(

−1
)

2 ·1 + 1 ·2 + 1 ·3 2 ·
(

−1
)

+ 1 ·
(

−1
)

+ 1 ·1 2 ·7 + 1 ·8 + 1 ·
(

−1
)

1·1 +
(

−3
)

·2 + 2·3 1·
(

−1
)

+
(

−3
)

·
(

−1
)

+ 2·1 1·7 +
(

−3
)

·8 + 2·
(

−1
)









=





9 0 13
7 −2 21
1 4 −19



 .
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So, once again,
(

just like the 2 × 2 case
)

in general, AB and BA are not equal.

Exercise (= “VIII”; Exercise 2). Calculate AB and BA:

(1) A =





2 1 3
−2 2 3
0 −1 −3



, B =





4 3 2
1 3 1
−1 2 −1



.

(2) A =





0 0 1
0 1 0
1 0 0



, B =





1 2 3
4 5 6
7 8 9



.

(3) A =





1 2 4
2 4 8
4 8 16



, B =





2 −4 0
−1 0 2
0 1 −1



.

(4) A =





1 −1 1
−1 1 −1
1 −1 1



, B =





1 −1 1
1 −1 1
1 −1 1



.

• Definition (Scalar multiplied to a matrix). Let s be a scalar. Then

s





a1 a2 a3
b1 b2 b3
c1 c2 c3



 =





sa1 sa2 sa3
sb1 sb2 sb3
sc1 sc2 sc3



.

Paraphrase:

If A =





a1 a2 a3
b1 b2 b3
c1 c2 c3



 and s : a scalar

=⇒ sA =





sa1 sa2 sa3
sb1 sb2 sb3
sc1 sc2 sc3



.
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Inverse of a 333××× 333 matrix.

Let A =





a1 a2 a3
b1 b2 b3
c1 c2 c3



. The inverse A−1 of A is the following matrix:

A−1 =





a1 a2 a3
b1 b2 b3
c1 c2 c3





−1

=
1

detA
adjA,

where

detA = a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1,

and

adjA =























+

∣

∣

∣

∣

b2 b3
c2 c3

∣

∣

∣

∣

−
∣

∣

∣

∣

a2 a3
c2 c3

∣

∣

∣

∣

+

∣

∣

∣

∣

a2 a3
b2 b3

∣

∣

∣

∣

−
∣

∣

∣

∣

b1 b3
c1 c3

∣

∣

∣

∣

+

∣

∣

∣

∣

a1 a3
c1 c3

∣

∣

∣

∣

−
∣

∣

∣

∣

a1 a3
b1 b3

∣

∣

∣

∣

+

∣

∣

∣

∣

b1 b2
c1 c2

∣

∣

∣

∣

−
∣

∣

∣

∣

a1 a2
c1 c2

∣

∣

∣

∣

+

∣

∣

∣

∣

a1 a2
b1 b2

∣

∣

∣

∣























.

A−1 exists, provided detA 6= 0.

Example. For A =







2 1 −2
5 −4 −1
1 −3 4






, find A−1.
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Step 1. Find the determinant of A:

detA = 2 ·
∣

∣

∣

∣

−4 −1
−3 4

∣

∣

∣

∣

− 1 ·
∣

∣

∣

∣

5 −1
1 4

∣

∣

∣

∣

+
(

−2
)

·
∣

∣

∣

∣

5 −4
1 −3

∣

∣

∣

∣

= 2 ·
(

−19
)

− 1 ·
(

−21
)

+
(

−2
)

·
(

−11
)

= −38 − 21 + 22 = −37.

Step 2. Find adjA:

adjA =































+

∣

∣

∣

∣

−4 −1
−3 4

∣

∣

∣

∣

−
∣

∣

∣

∣

1 −2
−3 4

∣

∣

∣

∣

+

∣

∣

∣

∣

1 −2
−4 −1

∣

∣

∣

∣

−
∣

∣

∣

∣

5 −1
1 4

∣

∣

∣

∣

+

∣

∣

∣

∣

2 −2
1 4

∣

∣

∣

∣

−
∣

∣

∣

∣

2 −2
5 −1

∣

∣

∣

∣

+

∣

∣

∣

∣

5 −4
1 −3

∣

∣

∣

∣

−
∣

∣

∣

∣

2 1
1 −3

∣

∣

∣

∣

+

∣

∣

∣

∣

2 1
5 −4

∣

∣

∣

∣































=





−19 2 −9
−21 10 −8
−11 7 −13



 .

To conclude,

A−1 =
1

−37





−19 2 −9
−21 10 −8
−11 7 −13





=
1

37





19 −2 9
21 −10 8
11 −7 13

















=













19

37

−2

37

9

37

21

37

−10

37

8

37

11

37

−7

37

13

37

























.
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Example. For A =





1 −3 2
3 −5 2
6 −6 2



, find A−1.

Step 1. Find the determinant of A:

detA = 1 ·
∣

∣

∣

∣

−5 2
−6 2

∣

∣

∣

∣

−
(

−3
)

·
∣

∣

∣

∣

3 2
6 2

∣

∣

∣

∣

+ 2 ·
∣

∣

∣

∣

3 −5
6 −6

∣

∣

∣

∣

= 1 · 2 −
(

−3
)

·
(

−6
)

+ 2 · 12

= 2 − 18 + 24 = 8.

Step 2.

adjA =































+

∣

∣

∣

∣

−5 2
−6 2

∣

∣

∣

∣

−
∣

∣

∣

∣

−3 2
−6 2

∣

∣

∣

∣

+

∣

∣

∣

∣

−3 2
−5 2

∣

∣

∣

∣

−
∣

∣

∣

∣

3 2
6 2

∣

∣

∣

∣

+

∣

∣

∣

∣

1 2
6 2

∣

∣

∣

∣

−
∣

∣

∣

∣

1 2
3 2

∣

∣

∣

∣

+

∣

∣

∣

∣

3 −5
6 −6

∣

∣

∣

∣

−
∣

∣

∣

∣

1 −3
6 −6

∣

∣

∣

∣

+

∣

∣

∣

∣

1 −3
3 −5

∣

∣

∣

∣































=





2 −6 4
6 −10 4
12 −12 4



 .

To conclude,

A−1 =
1

8





2 −6 4
6 −10 4
12 −12 4





=
1

4





1 −3 2
3 −5 2
6 −6 2

















=













1

4

−3

4

1

2

3

4

−5

4

1

2

3

2

−3

2

1

2

























.
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• The 333××× 333 identity matrix.

Define

I =





1 0 0
0 1 0
0 0 1



.

We call it the 3× 3 identity matrix. If you want to be meticuous, you can denote it
I3 to indicate the size.

Fact 1. For I =





1 0 0

0 1 0

0 0 1



 and A =





a1 a2 a3

b1 b2 b3
c1 c2 c3



, we have

IA = A, and AI = A.

Fact 2. For A =





a1 a2 a3

b1 b2 b3
c1 c2 c3



, suppose

detA 6= 0.

Then

AA−1 = I, and A−1A = I.

Exercise (= “VIII”; Exercise 3). Prove Fact 1 and Fact 2 above
(

brute-force
)

.
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• Gaussian elimination.

Example. Consider















x + y + z = 2,

− x + 3y + 2z = 8,

4x + y = 4.

Solve this system brute-force, step-by-step .

Step 1. Multiply 2 to the first equation in the system sidewise. The result is

2x + 2y + 2z = 4.

Step 2. Subtract it from the second equation in the given system sidewise. The

result is

−3x + y = 4.

Step 3. Subtract it from the third equation in the given system sidewise. The

result is

7x = 0.

Step 4. Multiply
1

7
to the two sides. The result is

x = 0.

Step 5. Go back to Step 2:

−3x + y = 4.

Substitute the outcome of Step 4: x = 0. The result is

y = 4.

Step 6. Go back to the first equation in the original system:

x + y + z = 2.
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Substitute the outcomes of Step 4 and Step 5: x = 0, y = 4. The result is

4 + z = 2.

Solve it for z:

z = −2.

In sum, we have obtained the solution

(

x, y, z
)

=
(

0, 4, −2
)

.

§9. Gaussian Elimination.

The above method is called “Gaussian elimination”. Below we frame it in the
context of matrix operations.

Problem 1. Solve the following system
(

the same as above
)















x + y + z = 2,

− x + 3y + 2z = 8,

4x + y = 4

using matrices.

Solution using matrices. Construct the so-called augmented matrix

(∗)







1 1 1 2

−1 3 2 8

4 1 0 4






.

∣

∣

∣

∣

∣

∣

The vertical rule actually doesn’t play any role. So you won’t see it below.

Goal. Re-enact the steps as above, using matrices, and ultimately reduce (∗) to

(#)





1 0 0 0
0 1 0 4
0 0 1 −2



.
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Step 1.









1 1 1 2

−1 3 2 8

4 1 0 4









·
(

−2
)

∣

∣

∣
− add up

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

←−−−−−−−−−−−−−−−−→







1 1 1 2

−3 1 0 4

4 1 0 4







(

Keep the original top row intact.
)

Step 2.







1 1 1 2

−3 1 0 4

4 1 0 4







·
(

−1
)

∣

∣

∣
− add up

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

←−−−−−−−−−−−−−−−
−→







1 1 1 2

−3 1 0 4

7 0 0 0







(

Keep the original middle row intact.
)

Step 3.







1 1 1 2

−3 1 0 4

7 0 0 0







∣

∣

∣

∣

∣

∣
multiply

1

7
∣

∣

∣

∣

∣

∣

←−−−
−→







1 1 1 2

−3 1 0 4

1 0 0 0






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Step 4.







1 1 1 2

−3 1 0 4

1 0 0 0







←−−−∣
∣

∣

∣

∣

− interchange

←−−−
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣−→







1 0 0 0

−3 1 0 4

1 1 1 2







←−−−∣
∣

∣

∣

∣

←−−−

Step 5.









1 0 0 0

−3 1 0 4

1 1 1 2









· 3 ∣

∣

∣
− add up

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

←−−−−−−−−−−−−−−−−→







1 0 0 0

0 1 0 4

1 1 1 2







(

Keep the original top row intact.
)

Step 6.







1 0 0 0

0 1 0 4

1 1 1 2







·
(

− 1
)

∣

∣

∣

∣

∣

− add up

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

←−−−−−−−−−−−−−−−
−→







1 0 0 0

0 1 0 4

0 1 1 2







(

Keep the original top row intact.
)
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Step 7.









1 0 0 0

0 1 0 4

0 1 1 2









·
(

− 1
)

∣

∣

∣
− add up

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

←−−−−−−−−−−−−−−−
−→







1 0 0 0

0 1 0 4

0 0 1 −2







(

Keep the original middle row intact.
)

This last matrix is of the form

(#)







1 0 0 0

0 1 0 4

0 0 1 −2







.

‖
I

The boxed part is the identity matrix I. So, the answer
(

namely, the x-, y- and

z-values
)

is found in the rigt-most column:

(

x, y, z
)

=
(

0, 4, −2
)

.

Question 1a. What sort of operations are allowed at every step of the reduction

process (∗) −→ (#)?

Answer to Question 1a.

Three operations, called elementary row operations, are allowed:

◦ multiply a scalar t to one entire row, where t 6= 0.

◦ add
[

t
(

a scalar
)

times row #a
]

to row #b
(

while keeping row #a intact
)

.

◦ Interchange row #a and row #b.
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Question 1b. Is there a name for something like (#)
(

in the previous page
)

?

Answer to Question 1b.

Yes: Reduced row echelon form. More precisely, any 3 × 4 matrix whose shape

falls into one of the following fifteen types is called a reduced row echelon form, where

each of the ‘∗’ spots is filled by an arbitrary number:





1 0 0 ∗
0 1 0 ∗
0 0 1 ∗



,





1 0 ∗ 0
0 1 ∗ 0
0 0 0 1



,





1 ∗ 0 0
0 ∗ 1 0
0 0 0 1



,





0 1 0 0
0 0 1 0
0 0 0 1



,





1 0 ∗ ∗
0 1 ∗ ∗
0 0 0 0



,





1 ∗ 0 ∗
0 0 1 ∗
0 0 0 0



,





1 ∗ ∗ 0
0 0 0 1
0 0 0 0



,





0 1 0 ∗
0 0 1 ∗
0 0 0 0



,





0 1 ∗ 0
0 0 0 1
0 0 0 0



,





0 0 1 0
0 0 0 1
0 0 0 0



,





1 ∗ ∗ ∗
0 0 0 0
0 0 0 0



,





0 1 ∗ ∗
0 0 0 0
0 0 0 0



,





0 0 1 ∗
0 0 0 0
0 0 0 0



,





0 0 0 1
0 0 0 0
0 0 0 0



,





0 0 0 0
0 0 0 0
0 0 0 0



.

• Any reduced echelon form, in any size
(

not just 3 × 4
)

, obeys the following:

(i) If you read off each row from left to right, then either it starts with 1, or it

starts with 0 and 0 repeats until 1 shows up at some point, or the whole

row is entirely 0. The first 1 from the left, if any, is called the leading 1.

(ii) A column that contains a leading 1 has 0 everywhere else.

(iii) By (ii), if there are two leading 1s, they cannot coexist in the same column.

In that case the lower one sits further right to the upper one.

(iv) A row that consists entirely 0, if any, are grouped together at the bottom.

The properties (i), (ii), (iii) and (iv) characterize reduced echelon forms in any size.
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Example. The following 3 × 4 matrices are in reduced row echelon form:





1 0 0 1
0 1 0 −2
0 0 1 −3



,





0 1 4 0
0 0 0 1
0 0 0 0



,





1 2 3 6
0 0 0 0
0 0 0 0



,





0 0 0 0
0 0 0 0
0 0 0 0



.

Exercise (= “IX”; Exercise 1). Which one of the following are in reduced row
echelon form?

(1)

[

0 1 0 0
0 0 0 1

]

, (2)





0 0 0
0 0 0
0 0 0



, (3)





0 0 0
0 1 0
0 0 0



,

(4)

[

0 1 2 3
0 0 0 0

]

, (5)

[

0 1 0 0
1 0 2 1

]

, (6)





1 0
0 1
0 0



,

(7)

[

0 1
0 1

]

, (8)

[

1 1
0 1

]

, (9)





1 −1 −1
0 1 1
0 0 1



, (10)





1 0 0
0 1 0
0 0 0



,

(11)





1 1 1
1 1 1
1 1 1



, (12)





1 0 0 0
0 0 0 1
0 0 0 0



, (13)





0 0 1 0 0
0 0 0 1 0
0 0 0 2 0



.

Exercise (= “IX”; Exercise 2). List up all possible 3× 6 reduced row echelon

forms. There are forty two
(

42
)

different types.

Question 1c. Is it always feasible to reduce something like (∗) to something like

(#)







1 0 0 ∗
0 1 0 ∗
0 0 1 ∗







.

‖
I

Answer to Question 1c.

No, it is not always true that any augmented 3× 4 matrix can be reduced to (#).
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However, it is true that any augmented 3 × 4 matrix can be reduced to a reduced
row echelon form

(

either one of the fifteen in the list in page 7
)

. More generally,

it is true that any matrix can be reduced to a reduced row echelon form of

the same size via elementary row operations.

Question 2a. Basically, the system in Problem 1 is of the form Axxx = bbb. We
already know how to invert A. So, the “golden rule”

Axxx = bbb =⇒
can solve,

xxx = A−1bbb

if det A 6=0

should take care of the problem. Then isn’t the above ‘solution’ redundant?

Question 2b. That said, computation of A−1 is very cumbersome. So, basically
the above ‘solution’ replaces the “golden rule”. Then what is the use of the inverse
of a matrix?

Question 3. Back to Question 2a, what happens if A−1 does not exist? What
can one say about the root of the system?

Answer to Questions 2a &&& 3.

It is absolutely correct, that the “golden rule” applies to Problem 1. The above
solution gives an alternative way to pull the answer. That said, the ‘golden rule’
works only when detA 6= 0. In the above, we didn’t know whether detA 6= 0
beforehand. The above method at our disposal even when we don’t know whether
detA 6= 0 beforehand.

Answer to Question 2b.

Now, what I just said might suggest that the notion of the inverse of matrices is
redundant. The truth is, the exact same method — to reduce a given matrix to a
reduced row echelon form — can be applied to calculate A−1 of a given matrix A.
The gist of what we have worked out above essentially amounts to calculating A−1.
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Formula 1. For a 3 × 3 matrix A =





a1 a2 a3
b1 b2 b3
c1 c2 c3



 , construct

[

A
∣

∣

∣
I
]

=





a1 a2 a3 1 0 0

b1 b2 b3 0 1 0
c1 c2 c3 0 0 1



 .

This is a 3 × 6 matrix.

(1) If the reduced row echelon form of
[

A
∣

∣

∣
I
]

is of the form

[

I
∣

∣

∣
B

]

=







1 0 0 p1 p2 p3

0 1 0 q1 q2 q3
0 0 1 r1 r2 r3






,

then detA 6= 0, and moreover

B =







p1 p2 p3
q1 q2 q3

r1 r2 r3







is the inverse of A: B = A−1.

(2) If the reduced row echelon form of
[

A
∣

∣

∣
I
]

is of the form





∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗



 ,

then detA = 0. In this case, A−1 does not exist.

Example. Find A−1 for A =





−2 2 3
1 −1 0
0 1 4



, if exists.

Step 1. Form

[

A
∣

∣

∣
I
]

=





−2 2 3 1 0 0
1 −1 0 0 1 0
0 1 4 0 0 1



 .
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Step 2. Apply Gaussian elimination method to reduce this matrix to a reduced
row echelon form

(

in what follows, top row; middle row, and bottom row, will be

referred to as
(

row 1
)

;
(

row 2
)

, and
(

row 3
)

, respectively
)

.





−2 2 3 1 0 0
1 −1 0 0 1 0
0 1 4 0 0 1



 −→





1 −1 −3/2 −1/2 0 0
1 −1 0 0 1 0
0 1 4 0 0 1





[

(

− 1/2
)

was multiplied to
(

row 1
)

]

−→





1 −1 −3/2 −1/2 0 0
0 0 3/2 1/2 1 0
0 1 4 0 0 1





[

(

− 1
)

times
(

row 1
)

was added to
(

row 2
)

]

−→





1 −1 −3/2 −1/2 0 0
0 1 4 0 0 1
0 0 3/2 1/2 1 0





[

(

row 2
)

and
(

row 3
)

were interchanged
]

−→





1 0 5/2 −1/2 0 1
0 1 4 0 0 1
0 0 3/2 1/2 1 0





[

(

row 2
)

was added to
(

row 1
)

]

−→





1 0 5/2 −1/2 0 1
0 1 4 0 0 1
0 0 1 1/3 2/3 0





[

(

2/3
)

was multiplied to
(

row 3
)

]
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−→





1 0 0 −4/3 −5/3 1
0 1 0 −4/3 −8/3 1
0 0 1 1/3 2/3 0





[

(

− 5/2
)

times
(

row 3
)

was added to
(

row 1
)

;

(

− 4
)

times
(

row 3
)

was added to
(

row 2
)

]

.

So, by part (1) of Formula 1, A−1 indeed exists, and it is

A−1 =





−4/3 −5/3 1
−4/3 −8/3 1
1/3 2/3 0



 .

Exercise (= “IX”; Exercise 3). Verify that the result for A−1 in Example
above is correct, by way of physically calculating A−1A

(

or alternatively, AA−1
)

.

If the outcome equals I, then this answer is indeed correct.
(

The proof of the fact

that this is indeed the correct checking method is pending.
)

Example 3. Find B−1 for B =





1 2 −1
3 7 −10
7 16 −21



, if exists.

Step 1. Form

[

B
∣

∣

∣
I
]

=





1 2 −1 1 0 0
3 7 −10 0 1 0
7 16 −21 0 0 1



 .

Step 2. Apply Gaussian elimination method to reduce this matrix to a reduced
row echelon form

(

in what follows, top row; middle row, and bottom row, will be

referred to as
(

row 1
)

;
(

row 2
)

, and
(

row 3
)

, respectively
)

.





1 2 −1 1 0 0
3 7 −10 0 1 0
7 16 −21 0 0 1



 −→





1 2 −1 1 0 0
0 1 −7 −3 1 0
0 2 −14 −7 0 1




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[

(

− 3
)

times
(

row 1
)

was added to
(

row 2
)

;

(

− 7
)

times
(

row 1
)

was added to
(

row 3
)

]

−→





1 2 −1 1 0 0
0 1 −7 −3 1 0
0 0 0 −1 −2 1



 .

[

(

− 2
)

times
(

row 2
)

was added to
(

row 3
)

]

This last matrix is of the form





∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗



 .

So, by part (2) of Formula 1, B−1 does not exist.

Exercise (= “IX”; Exercise 4). For B as above, verify that B−1 does not
exist, independently of the above, by way of calculating detB. If the outcome equals
0, then the above conclusion, that B−1 does not exist, is indeed correct.

Exercise (= “IX”; Exercise 5). Use Formula 1 to invert each of the six matrices
(1–6) in Exercise 5, page 14 of “Review of Lectures – III”. Verify that you get the
same answer for each of (1–6). Let me duplicate them below:

(1) A =







2 1 −2
5 −4 −1
1 −3 4






. (2) A =







1 3 1

2 4 1

1 −2 −2






.

(3) A =







3 4 −4
2 1 4

−2 4 1






. (4) A =







3 5 10

3 1 6

−2 −2 −6






.
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(5) A =

















1
√

2
√

3

√
2

−2 − 3
√

6

5

6 −
√

6

5

√
3

6 −
√

6

5

−3 − 2
√

6

5

















.

(6) A =





















2 + 3
√

2

8

−2
√

3 +
√

6

8

√
6

4

−2
√

3 +
√

6

8

6 +
√

2

8

√
2

4

−
√

6

4
−
√

2

4

√
2

2





















.
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